AIの過学習ってなあに??

1: 5chまとがお送りします 2020/01/15(水) 14:02:01.208 ID:L229Tgeyr

学習不足ならわかるが、過学習するとどうなるの?







2: 5chまとがお送りします 2020/01/15(水) 14:02:30.906 ID:SodgV7aCM

爆発する


3: 5chまとがお送りします 2020/01/15(水) 14:02:39.929 ID:KSityhMWa

知らないろうが幸せだったことを知る


4: 5chまとがお送りします 2020/01/15(水) 14:03:21.633 ID:st7+k+CXa

ディスク容量が足りなくなる


5: 5chまとがお送りします 2020/01/15(水) 14:04:04.393 ID:qNDnL9hX0

未知の事態に対応できなくなる






6: 5chまとがお送りします 2020/01/15(水) 14:04:08.229 ID:yKIUHdbR0

感想を同人作家さんに送ったら起こった悲劇
http://jiko8.tecnova.com.br/zsm23/a1xf6f6ot2ha6g.html

ほとんどの作家さんはこんなことないだろうけれど1回でも嫌な目に遭うと控えますよね。

http://jiko8.tecnova.com.br/vei7x4/cyxs0ygo6yhqwv.html


7: 5chまとがお送りします 2020/01/15(水) 14:04:22.218 ID:4VTHb/hUa

未熟な段階で切り捨てた方のデータが取れなくなって片方を評価しなくなってしまう
みたいないめえじ


8: 5chまとがお送りします 2020/01/15(水) 14:04:27.192 ID:81JNCsthM

勉強し過ぎて融通が利かないやつになってしまう


9: 5chまとがお送りします 2020/01/15(水) 14:04:50.934 ID:tH/aFW+Td

学習したデータには非常に高い正解率を出せるようになるが、新たなデータの正解率は高くない状態になること


10: 5chまとがお送りします 2020/01/15(水) 14:04:52.589 ID:g15D4I35M

学習能力の格差が広がって低いやつがグレる






11: 5chまとがお送りします 2020/01/15(水) 14:05:03.391 ID:CeaiZZ8hr

格ゲー一緒にやる友達居なくてCPU相手に100%ノーダメ勝利できるようになったやつが対人戦では弱いみたいな


12: 5chまとがお送りします 2020/01/15(水) 14:05:31.762 ID:k6/f2zxPM

一周回って馬鹿になる何


13: 5chまとがお送りします 2020/01/15(水) 14:05:47.702 ID:8eggZIwoa

勉強疲れ


14: 5chまとがお送りします 2020/01/15(水) 14:06:12.437 ID:lnzILCEKp

テストで山張りすぎて想定範囲外からの出題に全く対応出来ないみたいな


15: 5chまとがお送りします 2020/01/15(水) 14:06:24.118 ID:R3TvXkQ80

AIが支配する近未来の世界で暴走して人類を排除する的なアレかと思ったら違うのかよツマンネ


20: 5chまとがお送りします 2020/01/15(水) 14:09:03.986 ID:lnzILCEKp

>>15
過学習って呼称だとそういうイメージしてしまうかもしれんな
英語だとoverfittingだから過適合って言った方が正確なんだがな
実際そういう言い方もするけど


24: 5chまとがお送りします 2020/01/15(水) 14:11:10.666 ID:tH/aFW+Td

>>20
確かにその訳の方がしっくりくるな


16: 5chまとがお送りします 2020/01/15(水) 14:07:08.847 ID:V2EMF8mmd

分析量が増えるせいで処理が遅くなる


17: 5chまとがお送りします 2020/01/15(水) 14:08:09.965 ID:6r11SUoS6

最近課題でやったな
サンプリングが偏りすぎて正常に評価ができなくなるみたいな話だっけ?


18: 5chまとがお送りします 2020/01/15(水) 14:08:25.426 ID:tH/aFW+Td

>>17
違う


21: 5chまとがお送りします 2020/01/15(水) 14:09:09.883 ID:6r11SUoS6

>>18
何も身に付いてないけど単位とれて良かったわ


23: 5chまとがお送りします 2020/01/15(水) 14:09:42.884 ID:tH/aFW+Td

>>21
おめ


26: 5chまとがお送りします 2020/01/15(水) 14:13:25.029 ID:qNDnL9hX0

>>17
割とこんなイメージだったけど違うの?


29: 5chまとがお送りします 2020/01/15(水) 14:16:34.003 ID:lnzILCEKp

>>26
サンプル数が少なくても過学習は起こるが訓練データ自体は関係無くモデルの設計次第でも起こる


34: 5chまとがお送りします 2020/01/15(水) 14:24:58.816 ID:qNDnL9hX0

>>29
すまん詳しく教えてくれんか
今ちょっと調べてきたらモデルが複雑で自由度が高すぎる場合に起こるって書いてあったけど
これ結局訓練データの総量増やせば解決しないの?


40: 5chまとがお送りします 2020/01/15(水) 14:31:11.785 ID:lnzILCEKp

>>34
データ数増やすもの過学習回避の一つの手
ただしデータ数が多いからといってもモデル設計がダメダメだと過学習は起こる
めちゃくちゃシンプルな例だと多項式フィッティングでnデータに対してnがいくら大きくてもモデルの最大次数をnにしたら過学習が起こる


42: 5chまとがお送りします 2020/01/15(水) 14:33:00.893 ID:qNDnL9hX0

>>40
結局パラメータの自由度と訓練データを相対的な関係で設定しなきゃならないって意味ね納得した


44: 5chまとがお送りします 2020/01/15(水) 14:38:35.151 ID:lnzILCEKp

>>42
そういうことだな


19: 5chまとがお送りします 2020/01/15(水) 14:09:00.170 ID:HFvlRY+d0

イレギュラーに対応できなくなる



この記事へのコメント